模拟退火
引入
模拟退火是一种随机化算法。当一个问题的方案数量极大(甚至是无穷的)而且不是一个单峰函数时,我们常使用模拟退火求解。
解释
根据 爬山算法 的过程,我们发现:对于一个当前最优解附近的非最优解,爬山算法直接舍去了这个解。而很多情况下,我们需要去接受这个非最优解从而跳出这个局部最优解,即为模拟退火算法。
什么是退火?(选自 百度百科)
退火是一种金属热处理工艺,指的是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却。目的是降低硬度,改善切削加工性;消除残余应力,稳定尺寸,减少变形与裂纹倾向;细化晶粒,调整组织,消除组织缺陷。准确的说,退火是一种对材料的热处理工艺,包括金属材料、非金属材料。而且新材料的退火目的也与传统金属退火存在异同。
由于退火的规律引入了更多随机因素,那么我们得到最优解的概率会大大增加。于是我们可以去模拟这个过程,将目标函数作为能量函数。
过程
先用一句话概括:如果新状态的解更优则修改答案,否则以一定概率接受新状态。
我们定义当前温度为
注意:我们有时为了使得到的解更有质量,会在模拟退火结束后,以当前温度在得到的解附近多次随机状态,尝试得到更优的解(其过程与模拟退火相似)。
如何退火(降温)?
模拟退火时我们有三个参数:初始温度
首先让温度
本页面最近更新:2025/8/29 18:05:34,更新历史
发现错误?想一起完善? 在 GitHub 上编辑此页!
本页面贡献者:Ir1d, abc1763613206, Mout-sea, Siyuan, sshwy, Tiphereth-A, 7F88FF, ChungZH, Enter-tainer, Ghastlcon, Henry-ZHR, HeRaNO, hsfzLZH1, iamtwz, kenlig, ouuan
本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用