Stoer-Wagner 算法

定义

由于取消了 源汇点 的定义,我们需要对 的概念进行重定义。

(其实是网络流部分有关割的定义与维基百科不符,只是由于一般接触到的割都是「有源汇的最小割问题」,因此这个概念也就约定俗成了。)

去掉其中所有边能使一张网络流图不再连通(即分成两个子图)的边集称为图的割。

即:在无向图 中,设 为图 中一些弧的集合,若从 中删去 中的所有弧能使图 不是连通图,称 的一个割。

有源汇点的最小割问题

最小割 中的定义。

无源汇点的最小割问题

包含的弧的权和最小的割。也称为全局最小割。

显然,直接跑网络流的复杂度是行不通的。


Stoer-Wagner 算法

引入

Stoer-Wagner 算法在 1995 年由Mechthild StoerFrank Wagner提出,是一种通过 递归 的方式来解决 无向正权图 上的全局最小割问题的算法。

性质

算法复杂度 一般可近似看作

它的实现基于以下基本事实:设图 中有任意两点 。那么任意一个图 的割 ,或者有 在同一连通块中,或者有 是一个 割。

过程

  1. 在图 中任意指定两点 ,并且以这两点作为源汇点求出图 最小割(定义为cut of phase),更新当前答案。
  2. 「合并」点 ,如果图 大于 ,则回到第一步。
  3. 输出所有cut of phase的最小值。

合并两点 :删除 之间的连边 ,对于 中任意一点 ,删除 ,并将其边权 加到

解释:如果 在同一连通块,对于 中的一点 ,假如 ,那么 也一定成立,否则因为 连通, 连通,导致 在同一连通块,此时 将比 更优。反之亦然。所以 可以看作同一点。

步骤 1 考虑了 不在同一连通块的情形,步骤 2 考虑了剩余的情况。由于每次执行步骤 2 都会使 减小 ,因此算法将在进行 后结束。

S-T 最小割的求法

(显然不是网络流。)

假设进行若干次合并以后,当前图 ,执行步骤 1。

我们构造一个集合 ,初始时令

我们每次将 中所有点中,满足 ,且权值函数 最大的节点加入集合 ,直到

其中权值函数的定义:

(若 ,则 )。

容易知道所有点加入 的顺序是固定的,令 表示第 个加入 的点, 表示 被加入 的大小,即 被加入的顺序。

则对任意点 ,一个 的割即为

证明

定义一个点 被激活,当且仅当 在加入 中时,发现在 此时最后一个点 早于 加入集合,并且在图 中, 不在同一连通块。

Stoer-Wagner1

如图,蓝色区域和黄色区域为两个不同的连通块,方括号中的数字为加入 的顺序。灰色节点为活跃节点,白色节点则不是活跃节点。

定义 ,也就是严格早于 加入 的点,令 的诱导子图(点集为 )的边集。(注意包含点 。)

定义诱导割

Lemma 1

对于任何被激活的点

证明:使用数学归纳法。

对于第一个被激活的点 ,由定义可知

对于之后两个被激活的点 ,假设 ,则有:

又,已知:

并且 联立可得:

由于 有贡献而对 没有贡献,在所有边均为正权的情况下,可导出:

由归纳法得证。

由于 ,并且 不在同一连通块,因此 会被激活,由此可以得出

P5632 【模板】Stoer-Wagner算法
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
  #include <bits/stdc++.h>
  using namespace std;
  const int N = 601;
  int fa[N], siz[N], edge[N][N];

  int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); }

  int dist[N], vis[N], bin[N];
  int n, m;

  int contract(int &s, int &t) {  // Find s,t
    memset(dist, 0, sizeof(dist));
    memset(vis, false, sizeof(vis));
    int i, j, k, mincut, maxc;
    for (i = 1; i <= n; i++) {
      k = -1;
      maxc = -1;
      for (j = 1; j <= n; j++)
        if (!bin[j] && !vis[j] && dist[j] > maxc) {
          k = j;
          maxc = dist[j];
        }
      if (k == -1) return mincut;
      s = t;
      t = k;
      mincut = maxc;
      vis[k] = true;
      for (j = 1; j <= n; j++)
        if (!bin[j] && !vis[j]) dist[j] += edge[k][j];
    }
    return mincut;
  }

  const int inf = 0x3f3f3f3f;

  int Stoer_Wagner() {
    int mincut, i, j, s, t, ans;
    for (mincut = inf, i = 1; i < n; i++) {
      ans = contract(s, t);
      bin[t] = true;
      if (mincut > ans) mincut = ans;
      if (mincut == 0) return 0;
      for (j = 1; j <= n; j++)
        if (!bin[j]) edge[s][j] = (edge[j][s] += edge[j][t]);
    }
    return mincut;
  }

  int main() {
    ios::sync_with_stdio(0), cin.tie(0);
    cin >> n >> m;
    if (m < n - 1) {
      cout << 0;
      return 0;
    }
    for (int i = 1; i <= n; ++i) fa[i] = i, siz[i] = 1;
    for (int i = 1, u, v, w; i <= m; ++i) {
      cin >> u >> v >> w;
      int fu = find(u), fv = find(v);
      if (fu != fv) {
        if (siz[fu] > siz[fv]) swap(fu, fv);
        fa[fu] = fv, siz[fv] += siz[fu];
      }
      edge[u][v] += w, edge[v][u] += w;
    }
    int fr = find(1);
    if (siz[fr] != n) {
      cout << 0;
      return 0;
    }
    cout << Stoer_Wagner();
    return 0;
  }

复杂度分析与优化

contract操作的复杂度为

一共进行 contract,总复杂度为

根据 最短路 的经验,算法瓶颈在于找到权值最大的点。

在一次contract中需要找 次堆顶,并递增地修改 次权值。

斐波那契堆 可以胜任 查找堆顶和 递增修改权值的工作,理论复杂度可以达到 ,但是由于斐波那契堆常数过大,码量高,实际应用价值偏低。

(实际测试中开 O2 还要卡评测波动才能过。)


评论