跳转至

爬山算法

简介

爬山算法是一种局部择优的方法,采用启发式方法,是对深度优先搜索的一种改进,它利用反馈信息帮助生成解的决策。

直白地讲,就是当目前无法直接到达最优解,但是可以判断两个解哪个更优的时候,根据一些反馈信息生成一个新的可能解。

因此,爬山算法每次在当前找到的最优方案 附近寻找一个新方案。如果这个新的解 更优,那么转移到 ,否则不变。

这种算法对于单峰函数显然可行。

Q:都知道是单峰函数了为什么不三分呢?

A:爬山算法的优势在于当正解的写法你并不了解(常见于毒瘤计算几何和毒瘤数学题),或者本身状态维度很多,无法容易地写分治(例 2 就可以用二分完成合法正解)时,可以通过非常暴力的计算得到最优解。

但是对于多数需要求解的函数,爬山算法很容易进入一个局部最优解,如下图(最优解为 ,而爬山算法可能找到的最优解为 )。

具体实现

爬山算法一般会引入温度参数(类似模拟退火)。类比地说,爬山算法就像是一只兔子喝醉了在山上跳,它每次都会朝着它所认为的更高的地方(这往往只是个不准确的趋势)跳,显然它有可能一次跳到山顶,也可能跳过头翻到对面去。不过没关系,兔子翻过去之后还会跳回来。显然这个过程很没有用,兔子永远都找不到出路,所以在这个过程中兔子冷静下来并在每次跳的时候更加谨慎,少跳一点,以到达合适的最优点。

兔子逐渐变得清醒的过程就是降温过程,即温度参数在爬山的时候会不断减小。

关于降温:降温参数是略小于 的常数,一般在 中选取。

例 1 「JSOI2008」球形空间产生器

题意:给出 维空间中的 个点,已知它们在同一个 维球面上,求出球心。,坐标绝对值不超过

很明显的单峰函数,可以使用爬山解决。本题算法流程:

  1. 初始化球心为各个给定点的重心(即其各维坐标均为所有给定点对应维度坐标的平均值),以减少枚举量。
  2. 对于当前的球心,求出每个已知点到这个球心欧氏距离的平均值。
  3. 遍历所有已知点。记录一个改变值 (分开每一维度记录)对于每一个点的欧氏距离,如果大于平均值,就把改变值加上差值,否则减去。实际上并不用判断这个大小问题,只要不考虑绝对值,直接用坐标计算即可。这个过程可以形象地转化成一个新的球心,在空间里推来推去,碰到太远的点就往点的方向拉一点,碰到太近的点就往点的反方向推一点。
  4. 将我们记录的 乘上温度,更新球心,回到步骤 2
  5. 在温度小于某个给定阈值的时候结束。

因此,我们在更新球心的时候,不能直接加上改变值,而是要加上改变值与温度的乘积。

并不是每一道爬山题都可以具体地用温度解决,这只是一个例子。

例题参考代码
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include <cmath>
#include <iomanip>
#include <iostream>
using namespace std;
double ans[10001], cans[100001], dis[10001], tot, f[1001][1001];
int n;

void check() {
  tot = 0;
  for (int i = 1; i <= n + 1; i++) {
    dis[i] = 0;
    cans[i] = 0;
    for (int j = 1; j <= n; j++)
      dis[i] += (f[i][j] - ans[j]) * (f[i][j] - ans[j]);
    dis[i] = sqrt(dis[i]);  // 欧氏距离
    tot += dis[i];
  }
  tot /= (n + 1);  // 平均
  for (int i = 1; i <= n + 1; i++)
    for (int j = 1; j <= n; j++)
      cans[j] += (dis[i] - tot) * (f[i][j] - ans[j]) /
                 tot;  // 对于每个维度把修改值更新掉,欧氏距离差*差值贡献
}

int main() {
  cin >> n;
  for (int i = 1; i <= n + 1; i++)
    for (int j = 1; j <= n; j++) {
      cin >> f[i][j];
      ans[j] += f[i][j];
    }
  for (int i = 1; i <= n; i++) ans[i] /= (n + 1);      // 初始化
  for (double t = 10001; t >= 0.0001; t *= 0.99995) {  // 不断降温
    check();
    for (int i = 1; i <= n; i++) ans[i] += cans[i] * t;  // 修改
  }
  cout << fixed << setprecision(3);
  for (int i = 1; i <= n; i++) cout << ans[i] << ' ';
}

例 2 「BZOJ 3680」吊打 XXX

题意:求 个点的带权类费马点。

框架类似,用了点物理知识。

参考代码
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#include <cmath>
#include <iomanip>
#include <iostream>
constexpr int N = 10005;
int n, x[N], y[N], w[N];
double ansx, ansy;

void hillclimb() {
  double t = 1000;
  while (t > 1e-8) {
    double nowx = 0, nowy = 0;
    for (int i = 1; i <= n; ++i) {
      double dx = x[i] - ansx, dy = y[i] - ansy;
      double dis = sqrt(dx * dx + dy * dy);
      nowx += (x[i] - ansx) * w[i] / dis;
      nowy += (y[i] - ansy) * w[i] / dis;
    }
    ansx += nowx * t, ansy += nowy * t;
    if (t > 0.5)
      t *= 0.5;
    else
      t *= 0.97;
  }
}

int main() {
  std::cin.tie(nullptr)->sync_with_stdio(false);
  std::cin >> n;
  for (int i = 1; i <= n; ++i) {
    std::cin >> x[i] >> y[i] >> w[i];
    ansx += x[i], ansy += y[i];
  }
  ansx /= n, ansy /= n;
  hillclimb();
  std::cout << std::fixed << std::setprecision(3) << ansx << ' ' << ansy
            << '\n';
  return 0;
}

优化

很容易想到的是,为了尽可能获取优秀的答案,我们可以多次爬山。方法有修改初始状态/修改降温参数/修改初始温度等,然后开一个全局最优解记录答案。每次爬山结束之后,更新全局最优解。

这样处理可能会存在的问题是超时,在正式考试时请手造大数据测试调参。

劣势

其实爬山算法的劣势上文已经提及:它容易陷入一个局部最优解。当目标函数不是单峰函数时,这个劣势是致命的。因此我们要引进 模拟退火